دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Authors
abstract
در بازشناسی الگو یکی از روش های افزایش دقت بازشناسی، بهره گیری از روش های متمایز ساز است. این روش ها یا به صورت تبدیل متمایزساز بر ویژگی ها بکار می روند یا از روش های یادگیری متمایزساز برای آموزش دسته بند استفاده می کنند. معمولا معیار تبدیلات متمایز ساز متفاوت با معیار آموزش و یا خطای دسته بندهای متمایز ساز است. در مقاله حاضر، برای هماهنگ کردن معیار تبدیل ویژگی و نیز معیار دسته بندی ماشین بردار پشتیبان روشی برای تخمین تبدیل ویژگی با استفاده از الگوریتم ژنتیک (ga) پیشنهاد می شود که معیار تبدیل آن کمینه کردن خطای دسته بندی ماشین بردار پشتیبان است. علاوه بر این، روشی برای تخمین تبدیل ویژگی با استفاده از الگوریتم ژنتیک دوهدفه، پیشنهاد می شود که معیار این تبدیل بیشینه شدن تمایز بین دسته ای (مطابق با معیار روش های تبدیل ویژگی) و کمینه کردن خطای دسته بندی ماشین بردار پشتیبان به صورت همزمان است. ارزیابی بر روی دادگان uci نشان می دهد که استفاده از معیارهای همزمان خطای دسته بندی و تمایز بین دسته ای در تبدیل ویژگی سبب بهبود عملکرد تبدیلات ویژگی متمایز ساز متداول در افزایش دقت دسته بندی ماشین بردار پشتیبان می گردد. علاوه بر اینکه استفاده از تبدیل ویژگی با معیار خطای دسته بندی نسبت به دیگر روش های شناخته شده تبدیل ویژگی و نیز روش دو هدفه، دقت دسته بندی ماشین بردار پشتیبان را بیشتر افزایش می دهد.
similar resources
دسته بندی سبک های یادگیری با استفاده از ویژگی های رفتاری و ماشین بردار پشتیبان دو قلو
موفقیت تحصیلی دانشجویان از اهداف مهم در محیطهای آموزشی است. یکی از عوامل مهم در تحقق این هدف، توجه به سبک یادگیری دانشجویان است. آگاهی از سبک یادگیری دانشجویان به طراحی یک روش مناسب آموزش کمک میکند. لحاظ کردن یک شیوه مناسب آموزش باعث بهبود عملکرد دانشجویان در محیط آموزشی میشود. در این مقاله، هدف ساخت یک مدل برای تشخیص خودکار سبکهای یادگیری است. بدین منظور از یک محیط آموزش الکترونیکی متشکل ا...
full textرویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانکها
یکی از مهم¬ترین مسائلی که همواره بانک¬ها و مؤسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می¬باشد. رقم قابل توجه مطالبات معوق بانکها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می¬باشد. از این رو تاکنون تلاشهای بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق¬تر متقاضیان تسهیلات اعتباری ...
full textتشخیص جزیره در شبکة توزیع مبتنی بر تبدیل S گسسته سریع و ماشین بردار پشتیبان
در این مقاله، روشی جدید برای تشخیص جزیره در خطوط توزیع با منابع تولید پراکنده مبتنی بر تبدیل S گسسته سریع ارائه شده است. در این روش، ابتدا تبدیل S ولتاژ و جریان در نقطة اتصال مشترک محاسبه شده است؛ سپس ویژگیهای متمایزکنندة حالت جزیره از حالت نرمال با استفاده از ماتریس S و کانتورهای فرکانسی استخراج میشوند. این ویژگیها با مطالعة شرایط مختلف عملکرد عادی ازجمله ورود و خروج بار، بارهای موتوری، وقو...
full textکاربرد الگوریتم ژنتیک و ماشین بردار پشتیبان در جستجوی پارامترهای نانوشرارههای تاج خورشید
Nanoflares are the small impulsive sudden energy releases, due to the explosion of solar background. Thus, determination of their energies and distributions is important . Recent observations and simulation models have shown that the frequency of their energies follows power-law. According to Parker hypothesis, if these exponents are greater than critical value 2, the contributions of nanofla...
full textکاهش ویژگی با استفاده از الگوریتم بهینه سازی توده ذرات وکلاسه بندی با ماشین بردار پشتیبان
انتخاب ویژگی و کاهش ابعاد داده امری مهم و قابل توجه در بازشناسی الگو می باشد که در سالهای اخیر توجه زیادی بر آن بوده است. این امر باعث افزایش سرعت پردازش در سیستم های بلادرنگ و کاهش حافظه برای ذخیره سازی اطلاعات می شود. در این راستا نقش الگوریتم های بهینه سازی خصوصاً الگوریتم بهینه سازی توده ذرات قابل توجه بوده است. به طوریکه با استفاده از الگوریتم بهینه سازی توده ذرات و انتخاب روش مناسب جهت محا...
My Resources
Save resource for easier access later
Journal title:
پردازش علائم و داده هاجلد ۱۲، شماره ۲، صفحات ۲۳-۳۹
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023